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e Carl Friedrich Gauss (1777-1855) German mathemati-
cian and scientist. Sometimes called the “prince of math-
ematicians,” Gauss ranks with Newton and Archimedes as
one of the three greatest mathematicians who ever lived.
His father, a laborer, was an uncouth but honest man who
would have liked Gauss to take up a trade such as garden-
ing or bricklaying; but the boy’s genius for mathematics was not
to be denied. In the entire history of mathematics there may never
have been a child so precocious as Gauss—by his own account he
worked out the rudiments of arithmetic before he could talk. One
day, before he was even three years old, his genius became appar-
ent to his parents in a very dramatic way. His father was preparing
the weekly payroll for the laborers under his charge while the boy
watched quietly from a corner. At the end of the long and tedious
calculation, Gauss informed his father that there was an error in the
result and stated the answer, which he had worked out in his head.
To the astonishment of his parents, a check of the computations
showed Gauss to be correct!

For his elementary education Gauss was enrolled in a squalid
school run by a man named Biittner whose main teaching technique
was thrashing. Biittner was in the habit of assigning long addition
problems which, unknown to his students, were arithmetic progres-
sions that he could sum up using formulas. On the first day that
Gauss entered the arithmetic class, the students were asked to sum
the numbers from 1 to 100. But no sooner had Biittner stated the
problem than Gauss turned over his slate and exclaimed in his peas-
ant dialect, “Ligget se’.” (Here it lies.) For nearly an hour Biittner
glared at Gauss, who sat with folded hands while his classmates
toiled away. When Biittner examined the slates at the end of the
period, Gauss’s slate contained a single number, 5050—the only
correct solution in the class. To his credit, Biittner recognized the
genius of Gauss and with the help of his assistant, John Bartels,
had him brought to the attention of Karl Wilhelm Ferdinand, Duke
of Brunswick. The shy and awkward boy, who was then fourteen,
so captivated the Duke that he subsidized him through preparatory
school, college, and the early part of his career.

From 1795 to 1798 Gauss studied mathematics at the University
of Géttingen, receiving his degree in absentia from the University of
Helmstadt. For his dissertation, he gave the first complete proof of
the fundamental theorem of algebra, which states that every poly-
nomial equation has as many solutions as its degree. At age 19
he solved a problem that baffled Euclid, inscribing a regular poly-
gon of 17 sides in a circle using straightedge and compass; and in
1801, at age 24, he published his first masterpiece, Disquisitiones

Arithmeticae, considered by many to be one of the most brilliant
achievements in mathematics. In that book Gauss systematized the
study of number theory (properties of the integers) and formulated
the basic concepts that form the foundation of that subject.

In the same year that the Disquisitiones was published, Gauss
again applied his phenomenal computational skills in a dramatic
way. The astronomer Giuseppi Piazzi had observed the asteroid
Ceres for % of its orbit, but lost it in the Sun. Using only three ob-
servations and the “method of least squares” that he had developed in
1795, Gauss computed the orbit with such accuracy that astronomers
had no trouble relocating it the following year. This achievement
brought him instant recognition as the premier mathematician in
Europe, and in 1807 he was made Professor of Astronomy and head
of the astronomical observatory at Gottingen.

In the years that followed, Gauss revolutionized mathematics by
bringing to it standards of precision and rigor undreamed of by his
predecessors. He had a passion for perfection that drove him to
polish and rework his papers rather than publish less finished work
in greater numbers—his favorite saying was ‘“Pauca, sed matura”
(Few, but ripe). As a result, many of his important discoveries were
squirreled away in diaries that remained unpublished until years
after his death.

Among his myriad achievements, Gauss discovered the Gaus-
sian or “bell-shaped” error curve fundamental in probability, gave
the first geometric interpretation of complex numbers and estab-
lished their fundamental role in mathematics, developed methods
of characterizing surfaces intrinsically by means of the curves that
they contain, developed the theory of conformal (angle-preserving)
maps, and discovered non-Euclidean geometry 30 years before the
ideas were published by others. In physics he made major contri-
butions to the theory of lenses and capillary action, and with Wil-
helm Weber he did fundamental work in electromagnetism. Gauss
invented the heliotrope, bifilar magnetometer, and an electrotele-
graph.

Gauss was deeply religious and aristocratic in demeanor. He
mastered foreign languages with ease, read extensively, and en-
joyed mineralogy and botany as hobbies. He disliked teaching and
was usually cool and discouraging to other mathematicians, possi-
bly because he had already anticipated their work. It has been said
that if Gauss had published all of his discoveries, the current state
of mathematics would be advanced by 50 years. He was without a
doubt the greatest mathematician of the modern era.

[Image: ©SSPL/The Image Works)
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» Example2 Verify Stokes’ Theorem for the vector field F(x, y, z) = 2zi + 3xj + 5yk,

b4
T ey taking o to be the portion of the paraboloid z = 4 — x> — y? for which z > 0 with upward
x / orientation, and C to be the positively oriented circle x> 4 y*> = 4 that forms the boundary
= of o in the xy-plane (Figure 15.8.3).
“ o 3 Solution. 'We will verify Formula (3). Since o is oriented up, the positive orientation
—— —V

of C is counterclockwise looking down the positive z-axis. Thus, C can be represented
parametrically (with positive orientation) by

Eﬁ;f*g+f4 x=2cost, y=2sint, z=0 (0<t<2m1) )
X

A Figure 15.8.3 Therefore,
‘(ﬁ F:dr = '(f 2zdx +3xdy + Sydz
C C

2r
= / [0+ (6cost)(2cost) 4+ 0]dr
0
2 1 1 2
=‘/ 12cos®tdt =12 | =t + —sin2t | =127
0 2 4 0

To evaluate the right side of (3), we start by finding curl F. We obtain

i j k
a a 9 . .

curl F = % 5 Py =5i+2j+3k
2z 3x Sy

Since o is oriented up and is expressed in the form z = g(x, y) = 4 — x2 — y?, it follows

from Formula (12) of Section 15.6 with curl F replacing F that

dz, 0z,

/ (curl F) ~ndS:/ (curl F) - (——l— —J+k) dA
dx ay

o R

=//(5i+2j+3k)'(2xi+2yj+k)dA
R

=//(10x+4y+3)dA
R

2 2
=/ / (10r cos @ + 4r sin6 + 3)r dr d6
o Jo

2 10, 3 4 3 3 272
=/ [ ’c%9+1;mw+_’] do
0 3 r=0

3 2
T 80 32 .
= — cosf + —sinf + 6 | d6
o 3 3

80 . 32 o
= | —sinf — — cos O + 60 = 12w
3 3 0

As guaranteed by Stokes’ Theorem, the value of this surface integral is the same as the value
obtained for the line integral. Note, however, that the line integral was simpler to evaluate
and hence would be the method of choice in this case. <



A Figure 15.8.4

(%

a

A Figure 15.8.5

Formula (9) is sometimes taken as a
definition of curl. This is a useful alter-
native to Definition 15.1.5 because it
does not require a coordinate system.

Curl F(Py)

]

N

A Figure 15.8.6

B CURL VIEWED AS CIRCULATION

Stokes’ Theorem provides a way of interpreting the curl of a vector field F in the context
of fluid flow. For this purpose let 0, be a small oriented disk of radius a centered at a point
Py in a steady-state fluid flow, and let n be a unit normal vector at the center of the disk
that points in the direction of orientation. Let us assume that the flow of liquid past the
disk causes it to spin around the axis through n, and let us try to find the direction of n that
will produce the maximum rotation rate in the positive direction of the boundary curve C,
(Figure 15.8.4). For convenience, we will denote the area of the disk o, by A(o,); that is,
A(o,) = ma?.

If the direction of n is fixed, then at each point of C, the only component of F that
contributes to the rotation of the disk about n is the component F - T tangent to C, (Fig-
ure 15.8.5). Thus, for a fixed n the integral

yﬁ F-Tds )
Ca

can be viewed as a measure of the tendency for the fluid to flow in the positive direction
around C,. Accordingly, (7) is called the circulation of F around C,. For example, in the
extreme case where the flow is normal to the circle at each point, the circulation around
C, is zero, since F + T = 0 at each point. The more closely that F aligns with T along the
circle, the larger the value of F - T and the larger the value of the circulation.

To see the relationship between circulation and curl, suppose that curl F is continuous
on o,, so that when o, is small the value of curl F at any point of o, will not vary much
from the value of curl F(Py) at the center. Thus, for a small disk o, we can reasonably
approximate curl F on o, by the constant value curl F(Py). Moreover, because the surface
o, is flat, the unit normal vectors that orient o, are all equal. Thus, the vector quantity n in
Formula (3) can be treated as a constant, and we can write

% F-Tds://(curlF)-ndS%curlF(PO)'n// das
Ca
Oq Oa

where the line integral is taken in the positive direction of C,. But the last double integral
in this equation represents the surface area of o,, so

% F-Tds = [curl F(Py) - n]A(o,)
Ca
from which we obtain

curl F(Py) *n =~

F-Tds 8)
Alga) Je,

The quantity on the right side of (8) is called the circulation density of F around C,.

If we now let the radius a of the disk approach zero (with n fixed), then it is plausible that

the error in this approximation will approach zero and the exact value of curl F(Pp) + n will

be given by

i 1
curl F(Py) *n = Jl—% AL ‘(é:a F-Tds &)

We call curl F(Py) - n the circulation density of F at Py in the direction of n. This quantity
has its maximum value when n is in the same direction as curl F( Py); this tells us that ar each
point in a steady-state fluid flow the maximum circulation density occurs in the direction of
the curl. Physically, this means that if a small paddle wheel is immersed in the fluid so that
the pivot point is at Py, then the paddles will turn most rapidly when the spindle is aligned
with curl F(Py) (Figure 15.8.6). If curl F = 0 at each point of a region, then F is said to be
irrotational in that region, since no circulation occurs about any point of the region.



George Gabriel Stokes (1819-1903) Irish mathemati-
cian and physicist. Born in Skreen, Ireland, Stokes came
from a family deeply rooted in the Church of Ireland. His
father was a rector, his mother the daughter of a rector,
and three of his brothers took holy orders. He received
his early education from his father and a local parish
clerk. In 1837, he entered Pembroke College and after graduating
with top honors accepted a fellowship at the college. In 1847 he was
appointed Lucasian professor of mathematics at Cambridge, a posi-
tion once held by Isaac Newton (and now held by the British physi-
cist, Stephen Hawking), but one that had lost its esteem through
the years. By virtue of his accomplishments, Stokes ultimately
restored the position to the eminence it once held. Unfortunately,
the position paid very little and Stokes was forced to teach at the
Government School of Mines during the 1850s to supplement his
income.

VQUICK CHECK EXERCISES 15.8

Stokes was one of several outstanding nineteenth century sci-
entists who helped turn the physical sciences in a more empirical
direction. He systematically studied hydrodynamics, elasticity of
solids, behavior of waves in elastic solids, and diffraction of light.
For Stokes, mathematics was a tool for his physical studies. He
wrote classic papers on the motion of viscous fluids that laid the
foundation for modern hydrodynamics; he elaborated on the wave
theory of light; and he wrote papers on gravitational variation that
established him as a founder of the modern science of geodesy.

Stokes was honored in his later years with degrees, medals,
and memberships in foreign societies. He was knighted in 1889.
Throughout his life, Stokes gave generously of his time to learned
societies and readily assisted those who sought his help in solving
problems. He was deeply religious and vitally concerned with the
relationship between science and religion.

[Image: http://commons.wikimedia.org/wiki/ File:Stokes_George_G.jpg]

(See page 1166 for answers.)

1. Leto be apiecewise smooth oriented surface that is bounded
by a simple, closed, piecewise smooth curve C with posi-
tive orientation. If the component functions of the vector
field F(x, y, z) have continuous first partial derivatives on
some open set containing o, and if T is the unit tangent vec-
tor to C, then Stokes’ Theorem states that the line integral

and the surface integral are equal.

We showed in Example 2 that the vector field
F(x,y,z) =2zi+3xj+ 5yk

satisfies the equation curl F = 5i 4 2j + 3k. Itfollows from
Stokes’ Theorem that if C is any circle of radius a in the xy-
plane that is oriented counterclockwise when viewed from
the positive z-axis, then

/F-Tds=—
C

where T denotes the unit tangent vector to C.

»

EXERCISE SET 15.8  [€] cas

3. (a) Ifo; and 0, are two oriented surfaces that have the same
positively oriented boundary curve C, and if the vector
field F(x, y, z) has continuous first partial derivatives
on some open set containing o; and o3, then it fol-
lows from Stokes’ Theorem that the surface integrals

and are equal.
(b) Let F(x,y, z) = 2zi + 3xj + Syk, let a be a positive
number, and let o be the portion of the paraboloid
z = a® — x> — y? for which z > 0 with upward orien-
tation. Using part (a) and Quick Check Exercise 2, it
follows that

/ (curl F) *ndS =________
o
4. For steady-state flow, the maximum circulation density oc-

curs in the direction of the of the velocity vector
field for the flow.

1-4 Verify Formula (2) in Stokes’ Theorem by evaluating the
line integral and the surface integral. Assume that the surface
has an upward orientation.
1. F(x,y,2) = (x —y)i+ (y —2)j + (z — x)Kk; o is the por-
tion of the plane x + y + z = 1 in the first octant.

2. F(x,y,7) = x% + y2j + z%Kk; o is the portion of the cone
z = /x% + y? below the plane z = 1.

3. F(x,y, z) = xi+ yj+ zk; o is the upper hemisphere
z=+/a? —x2 -y

4. F(x,y,2) = (z—y)i+ (z+x)j— (x + y)k; o is the por-
tion of the paraboloid z = 9 — x? — y? above the xy-plane.

5-12 Use Stokes’ Theorem to evaluate % F-dr.
c

5. F(x,y,2) = 2%i +2xj — y’k; C is the circle x> + y> = 1
in the xy-plane with counterclockwise orientation looking
down the positive z-axis.

6. F(x,y,z) =xzi+ 3x2y2j + yxk; C is the rectangle in the
plane z = y shown in Figure 15.8.2.

7. F(x,y,z) =3zi+4xj+ 2yk; C is the boundary of the
paraboloid shown in Figure 15.8.3.

8. F(x,y,z) = —3y%i + 4zj + 6xk; C is the triangle in the
plane z = %y with vertices (2, 0, 0), (0, 2, 1), and (0, 0, 0)
with a counterclockwise orientation looking down the pos-
itive z-axis.



9. F(x, y,z) = xyi+ x%j + z°k; C is the intersection of the
paraboloid z = x2 + y? and the plane z = y with a coun-
terclockwise orientation looking down the positive z-axis.

10. F(x, y, z) = xyi + yzj + zxk; C is the triangle in the plane
x 4+ y + z = 1 withvertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)
with a counterclockwise orientation looking from the first
octant toward the origin.

- FGx oy, )= —yi+(y—2j+G@—xk C is the
circle x> + y*> = a? in the xy-plane with counterclockwise
orientation looking down the positive z-axis.

12. F(x,y,2) = (z +sinx)i+ (x + y)j+ (y + e)k; C is

the intersection of the sphere x2 + y? + z? = 1 and the cone
z = /x2 + y? with counterclockwise orientation looking
down the positive z-axis.

1

ja—

13-16 True-False Determine whether the statement is true or

false. Explain your answer.

13. Stokes’ Theorem equates a line integral and a surface inte-
gral.

14. Stokes’ Theorem is a special case of Green’s Theorem.

15. The circulation of a vector field F around a closed curve C
is defined to be /(curl F) - Tds
c

16. If F(x, y, z) is defined everywhere in 3-space, and if curl F
has no k-component at any point in the xy-plane, then
F-Tds=0
c
for every smooth, simple, closed curve in the xy-plane.
17. Consider the vector field given by the formula
Fx,y,2) =(x—2i+(y—x)j+ (z—xyk
(a) Use Stokes’ Theorem to find the circulation around
the triangle with vertices A(1,0,0), B(0,2,0), and
C(0, 0, 1) oriented counterclockwise looking from the
origin toward the first octant.
(b) Find the circulation density of F at the origin in the
direction of k.
(c) Find the unit vector n such that the circulation density
of F at the origin is maximum in the direction of n.

FOCUS ON CONCEPTS

18. (a) Let o denote the surface of a solid G with n the
outward unit normal vector field to . Assume that
F is a vector field with continuous first-order partial
derivatives on o. Prove that

//(curlF)-ndS:O

o

[Hint: Let C denote a simple closed curve on o that

separates the surface into two subsurfaces o) and

o, that share C as their common boundary. Apply

Stokes’ Theorem to o and to o, and add the results.]
(b) The vector field curl(F) is called the curl field of

F. In words, interpret the formula in part (a) as a

statement about the flux of the curl field.

19-20 The figures in these exercises show a horizontal layer
of the vector field of a fluid flow in which the flow is par-
allel to the xy-plane at every point and is identical in each
layer (i.e., is independent of z). For each flow, state whether
you believe that the curl is nonzero at the origin, and explain
your reasoning. If you believe that it is nonzero, then state
whether it points in the positive or negative z-direction.

19. (@)

21. Let F(x, y, z) be a conservative vector field in 3-space
whose component functions have continuous first partial
derivatives. Explain how to use Formula (9) to prove
that curl F = 0.

22. In 1831 the physicist Michael Faraday discovered that an
electric current can be produced by varying the magnetic
flux through a conducting loop. His experiments showed
that the electromotive force E is related to the magnetic
induction B by the equation

d
%E-dr:—// B-ndS
c at
o

Use this result to make a conjecture about the relationship
between curl E and B, and explain your reasoning.

[€] 23. Let o be the portion of the paraboloid z = 1 — x> — y? for

which z > 0, and let C be the circle x2 + y2 = 1 that forms
the boundary of o in the xy-plane. Assuming that o is
oriented up, use a CAS to verify Formula (2) in Stokes’
Theorem for the vector field

F=%y—2)i+ (' —x)j+@x+3z- Dk

by evaluating the line integral and the surface integral.

24. Writing Discuss what it means to say that the curl of a
vector field is independent of a coordinate system. Explain
how we know this to be true.

25. Writing Compare and contrast the Fundamental Theorem

of Line Integrals, the Divergence Theorem, and Stokes’
Theorem.
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1. / F - Tds; //(curl F)-ndS 2. 37a* 3. (a) //(cur[ F) - ndS; //(curl F)-ndS (b) 37a* 4. curl
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